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Single-expansion EBCM computations for osculating spheres
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Abstract

We show that the standard, single-expansion extended boundary condition method provides convergent
scattering results for osculating dielectric spheres and discuss the implications of this result. Published by
Elsevier Science Ltd.

1. Introduction

The extended boundary condition method (EBCM), otherwise known as the single-expansion
version of the ¹-matrix method, is an exact technique for computing electromagnetic scattering by
small particles based on numerically solving Maxwell's equations [1,2]. Although in principle this
technique can be applied to arbitrarily shaped particles, most practical applications of EBCM have
dealt with rotationally symmetric particles such as spheroids, "nite circular cylinders, and so-called
Chebyshev particles [2]. In this Brief Communication we apply EBCM to a new class of particles,
namely, osculating spheres. This research is motivated not only by the natural desire to expand
the range of shapes treated with EBCM, but also by the fact that the application of the
multi-expansion superposition ¹-matrix method (STM) to osculating spheres seems to produce
divergent results [3,4].

2. Computations

Unlike STM [5], EBCM uses a single expansion of the incident, internal, and scattered "elds in
vector spherical wave functions. Computations for osculating spheres (i.e., spheres with the
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Fig. 1. Spherical coordinates used to specify the shape of an osculating sphere with equal components.

distance between their centers smaller than the sum of their radii; see Fig. 1) required a rather
straightforward modi"cation of the single-expansion ¹-matrix code described in [6] and available
at http://www.giss.nasa.gov/&crmim. Speci"cally, we have added a simple subroutine which
computes the shape of the particle, r(�,�), and the partial derivative Rr(�,�)/R�. The shape of
a particle formed by a pair of identical osculating spheres in the spherical coordinate system with
the z-axis directed along the line connecting the centers of the spheres (Fig. 1) is given by the
following simple expression:

r(�,�)"�
R( f cos �#�1!f � sin��), �(�/2,

R(!f cos�#�1!f � sin��), �'�/2,
(1)

where R is the radius of the component spheres, f"d/(2R), and d is the distance between the sphere
centers. Furthermore,

Rr(�,�)
R� "�

!Rf sin ��1# f cos �

�1!f � sin���, �(�/2,

Rf sin��1! f cos�

�1!f � sin���, �'�/2.

(2)

The ¹-matrix code computes the optical-cross sections, the asymmetry parameter of the phase
function, and the elements of the scattering matrix for randomly oriented particles. Since osculating
spheres are particles with a plane of symmetry, the scattering matrix has a simple block-diagonal
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Table 1
Extinction cross section and asymmetry parameter
of the phase function for randomly oriented os-
culating spheres with f"1 (bisphere with touching
components), 0.5, 0.2, and 0 (single sphere)

f C
���

(�m�) g

1 4.861 0.8573
0.5 4.185 0.8617
0.2 3.360 0.8615
0 2.654 0.8550

structure,

F(�)"�
a
�
(�) b

�
(�) 0 0

b
�
(�) a

�
(�) 0 0

0 0 a
�
(�) b

�
(�)

0 0 !b
�
(�) a

�
(�)�, (3)

where � is the scattering angle, and has only six independent elements [7]. The (1,1)-element of the
scattering matrix (i.e., the phase function) satis"es the standard normalization condition,

1
2 �

�

�

a
�
(�) sin�d�"1. (4)

We have found that although the accuracy of single-expansion ¹-matrix computations for
osculating spheres depends on the particle refractive index m and size parameter x"2�R/� (� is
wavelength) as well as on f, convergent results can be obtained for a rather wide range of these
parameters. As an example, Fig. 1 and Table 1 show results computed with an extended-precision
FORTRAN code for m"1.31, R"0.5 �m, �"0.6283 �m, and f"0 (single sphere), 0.2, and 0.5.
For comparison, we also show results for a bisphere with touching components ( f"1) obtained
with the superposition ¹-matrix code described in [8]. In all cases the size of the ¹ matrix was
increased in unit steps until the extinction and scattering cross-sections converged within 0.01%.
The physical correctness of the results was checked using the general relationships derived in
[9,10]. Furthermore, we have made sure that EBCM results for f"0 (single sphere) exactly
reproduce the corresponding Lorenz}Mie results.

Not surprisingly, the single-sphere curves in Fig. 1 exhibit the largest amplitude of oscillations
caused by interference e!ects, whereas the amplitude of oscillations for other particles is reduced by
averaging over orientations. The growth of the average projected area with increasing f causes
a notable increase of the extinction cross section (Table 1) and the forward-scattering phase
function value, a

�
(03). Although for spheres a

�
(�),a

�
(�) and a

�
(�),a

�
(�), the results for

nonspherical particles with f'0 in Fig. 1 show signi"cant di!erences between these scattering
matrix elements.
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Fig. 2. Elements of the scattering matrix versus scattering angle for randomly oriented osculating spheres with f"1
(bisphere with touching components), 0.5, 0.2, and 0 (single sphere).
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Note that even with the extended-precision code, we could not obtain convergence for f'0.5 for
the same m, R, and �. Apparently, this can be explained by the sensitivity of single-expansion
EBCM computations to increasing concavity of the particle shape noted earlier by Mugnai and
Wiscombe [11] in their calculations for Chebyshev particles.

3. Discussion and conclusions

Our results demonstrate that EBCM can be successfully applied to osculating spheres. On the
other hand, the results of [3,4] suggest that the multi-expansion STM, while providing convergent
results for bispheres with separated or touching components ( f51) [8], produces divergent results
for osculating spheres ( f(1). Furthermore, the performance of EBCM improves with decreasing f,
in contrast to the behavior of STM. It is important to realize that STM for bispheres with touching
or separated components does not rely on the so-called Rayleigh hypothesis (RH), but becomes
dependent on RH for f(1. (RH states that the expansion of the scattered "eld in outgoing
spherical functions is valid in the region between the particle surface and its smallest circumscribing
sphere.) Similar convergence problems are encountered with the point-matching technique, which
also explicitly relies on RH [12]. On the other hand, the derivation of EBCM in [13] completely
avoids the use of RH. Therefore, it seems logical to suggest that the success of EBCM in
computations for osculating spheres may be explained by EBCM not relying on RH.

This result may be important since it has been shown that EBCM can be derived from RH
[14,15]. The title and conclusions of [14] may seem to suggest that EBCM is equivalent to the
method of RH. However, the fact that EBCM can be derived from RH only means that RH is
a su$cient condition of validity of EBCM, but not the necessary condition. Therefore, one should
not exclude the possibility that EBCM may be valid even when RH is violated [16].
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